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2-D Electromagnetic Scattering and Inverse
Scattering From Anisotropic Objects

Under TE Illumination Solved by
the Hybrid SIM/SEM

Jiawen Li , Zili Li, Zhen Guan , and Feng Han , Senior Member, IEEE

Abstract— This article presents an efficient hybrid solver based
on the spectral-integral method (SIM) and the spectral element
method (SEM) which is used to solve both the electromagnetic
(EM) scattering and inverse scattering by two-dimensional (2-D)
anisotropic objects when the excitation source is transverse elec-
tric (TEz)-polarized. The scalar Helmholtz equation describing
the magnetic field variation inside the anisotropic region is dis-
cretized and solved by SEM and the corresponding computational
domain is truncated by a smooth elliptical surface on which
SIM is implemented to fulfill the radiation boundary condition
(RBC). The scattered EM fields at the receiver array are directly
computed by multiplying the spectral-domain solution of the
EM fields on the elliptical boundary and the spectral-domain
radiation matrix. In the inverse scattering, the sensitivity matrix
is constructed by multiplying the adjoint solution of magnetic
fields by the first-order derivatives of the system stiffness matrix
with respect to anisotropic model parameters inside the inversion
domain. Meanwhile, in each iteration, the sensitivity matrix is
synchronously updated based on the solution of the forward
solver in the last iteration step. Numerical experiments are
carried out to show the computation efficiency and correctness
of both the scattering and inverse scattering solvers based on the
hybrid SIM/SEM.

Index Terms— Conjugate gradient (CG), electromagnetic (EM)
scattering and inverse scattering, spectral element method (SEM),
spectral-integral method (SIM).

I. INTRODUCTION

ELECTROMAGNETIC (EM) scattering and inverse scat-
tering are two reciprocal processes that are ubiquitous in

both military and civil areas. The forward scattering refers to
computing the spatial EM field distribution when the incident
wave interacts with specific targets, which has been intensively
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studied in the past decades for the applications of remote sens-
ing [1], nondestructive testing [2], metamaterial design [3], and
so on. By contrast, the inverse scattering is to infer the model
parameters, for example, dielectric permittivity, conductivity,
positions, and sizes, of the unknown targets from measured
EM fields by some iterative methods. Typical applications
include microwave imaging [4], geophysical exploration [5],
biomedical diagnosis [6], and so on.

One of the commonly used methods to solve EM scattering
and inverse scattering problems is using the integral equation
(IE). The total EM fields inside the computational domain
when the scatterers are present are regarded as the summation
of the incident EM fields when the scatterers are absent and the
scattered EM fields that are radiated by the fictitious equivalent
current generated by the total fields inside the computational
domain. Therefore, there is no analytical solution for such an
equation. The earliest used approach is to discretize the IE
and numerically solve it using the method of moment (MoM)
[7], [8]. Nevertheless, MoM has an unaffordable computational
cost if the scatterer has a large electrical size [9]. A series of
fast algorithms such as stabilized biconjugate gradient (BCGS)
fast Fourier transform (FFT) [10], multilevel fast multipole
algorithm (MLFMA) [11], adaptive integral method (AIM)
[12], and precorrected-FFT (pFFT) [13] are suggested to lower
the computational cost of MoM. The fast computation is
achieved by these methods through utilizing FFT to accel-
erate the convolution in the discretized IEs, for example,
BCGS-FFT, or through dividing the computation domain into
the near-field part and the far-field part, for example, MLFMA,
AIM, and pFFT. The full-wave inversion (FWI) solvers which
iteratively call these fast-forward scattering algorithms have
also been intensively studied in the past decades and applied
in various EM detection scenarios. For example, the Born-type
iterative methods have been combined with the BCGS-FFT
forward solver to reconstruct three-dimensional (3-D) biaxial
anisotropic objects [14], 3-D arbitrary anisotropic objects [15],
[16], or deep Earth ore distribution from airborne EM measure-
ment [17]. On the other hand, there are also some FWI solvers
based on the IEs but without calling the forward solvers.
For example, in the contrast source inversion (CSI), the cost
function is constructed using the summation of mismatches
in the data equation and the state equation which is usually
described by an IE [18]. When it is implemented, the induced
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current and the dielectric contrast are alternately updated [19].
The subspace-based optimization method (SOM) is carried
similar to CSI but for a subspace of the induced current [20].
The advantages of these IE-based EM scattering and inverse
scattering methods lie in the restricted computation domain.
The scatterers can be tightly wrapped by the computation
domain boundary and the EM wave propagation between the
computation domain and the transceivers is usually described
by Green’s functions. However, the drawback is also obvious.
The Green’s functions for the background medium must be
precisely evaluated, no matter analytically or numerically. This
is usually difficult for an arbitrary inhomogeneous background.

EM scattering and inverse scattering methods based on
differential equation (DE), for example, Helmholtz equation,
can naturally overcome this drawback since the whole compu-
tational domain, no matter whether a homogeneous one or an
arbitrary inhomogeneous one, which wraps the transceivers,
can be completely discretized, and thus the EM fields at
any point inside the domain can be directly solved when the
DE is constrained by some boundary conditions. One of the
most common applications of DE-based forward solvers is
simulating EM scattering from anomalous bodies, for example,
metal minerals and underground water, which are buried in
inhomogeneous deep Earth with irregular topography. For
example, in [21], the finite-element method (FEM) with dis-
torted hexahedral grids is adopted to simulate magnetotelluric
signals in the Xinjiang Luntai area when the surface topog-
raphy is incorporated in the forward model. In [22], the
finite-difference (FD) method is taken to compute 2.5-D EM
scattering for logging-while-drilling measurements in com-
plex geological scenarios. In [23], the 3-D spectral element
method (SEM) with unstructured hexahedral meshes is used
to simulate controlled-source EM data. The FWI methods
corresponding to these common DE-based forward scatter-
ing methods include the quasi-Newton (QN) method [24],
conjugate-gradient (CG) method [25], nonlinear CG (NLCG)
method [26], Gauss–Newton (GN) method [21], and so on.
And these methods have been successfully applied to 2-D [27],
2.5-D [28], and 3-D [29] geophysical inversion in which
the computational domain is usually truncated by absorption
boundaries.

In our previous work, we have accomplished the EM
forward scattering computation [30] based on SEM and
the inverse scattering computation [31] based on SEM-CG
but with the computational domain truncated by the radi-
ation boundary condition (RBC) which are formulated by
the spectral integral method (SIM). This hybrid spectral-
element spectral-integral (SESI) method inherits the merits
of both SEM and SIM, and thus the EM fields inside the
computation domain are solved by the DE-based SEM but
the transceivers are allowed to be placed far away from
the computation domain. However, in [30] and [31], only
dielectric isotropic scatterers are considered. Meanwhile, the
SIM can only be implemented on a circular smooth boundary.
Therefore, we extend our previous works and make three new
contributions here: 1) the EM waves are excited and scattered
in the transverse electric (TEz) mode, which leads to a different
spectral-domain system matrix and a different radiation matrix

Fig. 1. Two-dimensional EM scattering and inverse scattering model based
on the hybrid SIM/SEM. The forward scattering is implemented inside the
domain V which is wrapped by a smooth elliptical boundary S. The inverse
scattering is implemented in the region D embedded inside V . The transmitter
can either be a 2-D magnetic dipole or a plane wave with TEz polarization.

compared with those in [30] and [31]; 2) the 2-D scatterers
are allowed to be biaxially anisotropic or arbitrary anisotropic,
which leads to a completely different sensitivity matrix used
in the inversion; and 3) SIM is allowed to be implemented on
a smooth elliptical boundary. In addition, one should note our
work is different from [32], [33], and [34] since the forward
and inverse solvers used in these works are based on IEs.
However, both solvers in our work are based on DEs which
are solved by the hybrid SIM/SEM. Our work is also different
from [35] since only the SIM is used to solve the EM scattering
from multilayered anisotropic ellipses in [35].

The rest of this article is organized as follows. In Section II,
the detailed mathematical formulas of the 2-D SEM and the
hybrid SESI method for the TEz mode are first presented.
Then, the first-order sensitivity matrix of the scattered EM
fields recorded at the receiver array with respect to multi-
ple dielectric anisotropic parameters inside the computational
domain is derived in detail. Finally, the implementation of the
FWI based on the SESI forward solver is simply mentioned.
In Section III, the accuracy and efficiency of the forward
SESI solver is verified by comparing its computation results
with those from the traditional FEM carried out by the
commercial software COMSOL. In Section IV, two numerical
examples are given to show the feasibility of the SESI-CG
to simultaneously reconstruct multiple anisotropic parameters.
Finally, in Section V, the conclusion is drawn.

II. PROBLEM FORMULATION

As shown in Fig. 1, several anisotropic scatterers are placed
inside the inversion domain D which is wrapped by the
elliptical boundary S. The SIM is implemented on S and
the forward scattering is solved by SEM in the region V .
By contrast, the FWI is only performed in the domain D. The
TEz-polarized transmitter can be a plane wave with the Ex ,
Ey , and Hz components or a 2-D magnetic dipole. The major
contents presented in this section are different from those
presented in [31, Sec. II] since we consider the anisotropy
and the 2-D TEz EM wave mode in this work. We first give
the brief formulas of SEM for the TEz EM wave mode. Then,



LI et al.: 2-D EM SCATTERING AND INVERSE SCATTERING FROM ANISOTROPIC OBJECTS 3519

the combination of SEM with SIM in the forward scattering
computation is discussed in detail. Following is the detailed
derivation of the first-order sensitivity matrix for the TEz EM
mode. Finally, the FWI based on the CG method is briefly
mentioned.

A. 2-D SEM for the TEz Mode

For the 2-D TEz EM wave mode, the scalar Helmholtz
equation based on the magnetic fields can be written as

−∇t ×

(
ϵ

−1
t ∇t × ẑHz

)
+ k2

0µẑHz = ẑSh (1)

where ∇t = x̂(∂/∂x) + ŷ(∂/∂y) is the gradient operator in
the xy plane, k0 = ω

√
ε0µ0 is the wavenumber of vacuum,

and Sh is the magnetic current source inside the computational
domain V . Since we consider the dielectric anisotropy of the
scatterers, the complex relative permittivity tensor ϵt is defined
as

ϵt =

[
ϵxx ϵxy

ϵyx ϵyy

]
= 2−1

[
ϵx 0
0 ϵy

]
2

= 2−1

εx +
σx

jωε0
0

0 εy +
σy

jωε0

2 (2)

where

2 =

[
cos θ sin θ

− sin θ cos θ

]
(3)

is the rotation matrix in which θ is the angle between the
optical axis of the biaxially anisotropic medium and the
positive x̂-axis [32]. We then use the scalar Gauss–Lobatto–
Legendre (GLL) testing function ẑψp [36] to test both sides
of (1) and conduct a series of mathematical transforms based
on some vector identities and physical laws and finally come
to the weak form∫

V

[
−(ẑ × ∇tψp) · ϵ

−1
t (ẑ × ∇t Hz)+ k2

0µψp Hz

]
dxdy

+ jk0

∫
S
ψp Mz(t)dt =

∫
V
ψp Shdxdy (4)

where Mz = (1/η0)Mz is the normalized surface magnetic
current density on the boundary S. On the other hand, we will
use the Galerkin method in this work and thus expand Hz in
the inhomogeneous region V and on the boundary S and M
on the boundary S also by GLL basis functions

Hz ≈

Ni∑
q=1

hi
qψq(x, y)+

Nb∑
q=1

hb
qψq(x, y) (5a)

Mz ≈

Nb∑
q=1

mb
qψq(t) (5b)

where the superscript i means inside the region V , the
superscript b means on the boundary S, Ni denotes the
discretized quadrilateral element number inside V , and Nb is
the discretized node number on S. One should note that there

is no source inside the computation domain V . Therefore, sub-
stituting (5) into (4), performing the integration, and discarding
the source term yield the discretized algebraic equation[

Zi i Zib 0
Zbi Zbb ZS

] hi

hb

Mb

 =

[
0
0

]
(6)

where hi
= (hi

q)
Ni
q=1, hb

= (hb
q)

Nb
q=1, and Mb

= (mb
q)

Nb
q=1 are

the expansion coefficient matrices for magnetic fields inside V ,
magnetic fields on the boundary S, and normalized magnetic
current density on S, respectively. The elements of matrices
Zi i , Zib

= (Zbi )T , Zbb, and ZS are evaluated by

Zuv
pq =

∫
V

[
−(ẑ × ∇tψp) · ϵ

−1
t (ẑ × ∇tψq)+k2

0µψpψq

]
dxdy

(7a)

ZS,pq = jk0

∫
S
ψpψq(t)dt (7b)

where the subscripts p and q, respectively, indicate the row
index and column index of the element Z in the matrix Zuv

or ZS . The superscripts u and v can take the value either of i
or b, which means the pth testing function and the qth basis
function are located inside the domain V or on the boundary S.
Equation (6) is actually the discretized algebraic form of
the 2-D Helmholtz equation in the TEz mode. Unfortunately,
it cannot be directly solved because the boundary condition
is not clarified. In the following, SIM applied to the smooth
elliptical boundary S fulfilling the RBC is used to truncate the
computational domain V .

B. Hybrid SESI Methods for the TEz Mode

According to the surface equivalence theorem, the surface
IE for magnetic fields on the boundary S can be written as

1
2

ẑHz(ρ)− −

∫
S

GHJ(ρ, ρ
′) ·

[
n̂(ρ ′)× ẑHz(ρ

′)
]
dt ′

− −

∫
S

GHM(ρ, ρ
′) · ẑMz(ρ

′)dt ′
= ẑH inc

z (ρ) (8)

where −

∫
is the Cauchy principal integral used to circumvent

the singularity when the source point ρ ′ and the field point ρ

overlap on S, n̂ is the outward unit normal vector along the
elliptical boundary as shown in Fig. 1, and GHJ and GHM
are 2-D Green’s functions whose expressions are given in
[35, Appendix A]. Since the boundary S is smooth, we can
adopt the SIM presented in [35] and [37] and implement the
integration of (8) in the spectral domain. As a result, (8) can
be discretized and compactly written as

ZJ h̃b
+ ZM M̃

b
= VS (9)

where the superscript b denotes the boundary S, h̃b is the
Fourier coefficient matrix of Hz on S, and its dimensions are
Ns × NT , where Ns is the order of the Fourier series and NT

is the transmitter number, M̃
b

is the Fourier coefficient matrix
of normalized Mz on S with the dimensions of Ns × NT , ZJ ,
and ZM are, respectively, the Fourier expressions of GHJ and
GHM with the dimensions of Ns × Ns , and VS is the matrix
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composed of spatial-domain incident magnetic fields on the
boundary S and has the dimensions of Ns × NT . Three points
must be emphasized here: 1) since SIM has an exponential
accuracy with a low spatial sampling density (SD) [35], there
are usually more discretized points of SEM than those of SIM
on the boundary S. In other words, Nb is much larger than
Ns in our problem; 2) the discretized points of SIM must be
completely included in those of SEM on S. Such a mandatory
constraint is to guarantee the accurate forward and inverse
Fourier transforms between the spatial-domain field values
from SEM and the spectral-domain coefficients from SIM
on the boundary S; and 3) to couple SIM and SEM on the
boundary S, we use [35]

hb(θq) =

Ns
2 −1∑

n=−
Ns
2

h̃b
ne− jnθq (10a)

mb(θq) =

Ns
2 −1∑

n=−
Ns
2

m̃
b
ne− jnθq (10b)

where θq is the azimuthal angle of the qth discretized point
of SEM on S and n is the order of the Fourier series of Hz
and normalized Mz on S from SIM. Equation (10) can be
compactly written as

hb
= Th̃b (11a)

Mb
= TM̃

b
(11b)

where T is the inverse Fourier transform matrix and has the
dimensions of Nb × Ns . Note T is not a square matrix since
Nb ≫ Ns in our problem. We then substitute (11) into (6),
combine (6) and (9), and obtain the matrix-form discretized
state equation

Zh = V (12)

where

Z =

 Zi i ZibT 0
Zbi ZbbT ZST
0 ZJ ZM

 (13a)

h =

 hi

h̃b

M̃
b

 (13b)

V =

 0
0

VS

 (13c)

and the system matrix Z has the dimensions of (Ni + Nb +

Ns) × (Ni + 2 × Ns). Each column of h corresponds to the
solution for each transmitter illumination. Since Nb ≫ Ns

in our problem, the state equation (12) is overdetermined.
In addition, the rank of the matrix Z is equal to its column
number and thus the solution of h is unique. By multiplying
the conjugate transpose of the system matrix in both sizes
of (12), we obtain

ZH Zh = ZH V. (14)

Therefore, the solution of the state equation (12) is

h = (ZH Z)−1ZH V. (15)

Once the EM field values on the boundary S are obtained, the
scattered fields at the receiver array are evaluated by the data
equations

Esct (ρr ) =

∮
S

GEJ(ρr , ρ
′) ·

[
n̂(ρ ′)× ẑHz(ρ

′)
]
dt ′

+

∮
S

GEM(ρr , ρ
′) · ẑMz(ρ

′)dt ′ (16a)

ẑH sct
z (ρr ) =

∮
S

GHJ(ρr , ρ
′) ·

[
n̂(ρ ′)× ẑHz(ρ

′)
]
dt ′

+

∮
S

GHM(ρr , ρ
′) · ẑMz(ρ

′)dt ′ (16b)

where the specific expressions of Green’s functions are given
in [35, Appendix A]. We suppose there are NT transmitters and
NR receivers. Equation (16) can be further written in matrix
forms

Esct
x =

[
0 REx

J REx
M

] hi

hb

Mb

 (17a)

Esct
y =

[
0 REy

J REy

M

] hi

hb

Mb

 (17b)

Hsct
z =

[
0 RHz

J RHz
M

] hi

hb

Mb

 (17c)

where the radiation matrix R composed of Green’s functions
has the dimensions of NR × Ns and the scattered fields
Esct

x , Esct
y , and Hsct

z have the same dimensions of NR × NT .
We then suppose each independent receiver is located in a
fictitious smooth circle, expand both the radiation matrix R
and the field values on the boundary S in (17) using Fourier
series, take the similar measures as those in the state equation
to derive (9) from (8), and finally come to the spectral-domain
discretized data equations

Esct
x =

[
0 R̃Ex

J R̃Ex
M

] hi

h̃b

M̃
b

 (18a)

Esct
y =

[
0 R̃Ey

J R̃Ey

M

] hi

h̃b

M̃
b

 (18b)

Hsct
z =

[
0 R̃Hz

J R̃Hz
M

] hi

h̃b

M̃
b
.

. (18c)

Consequently, the scattered fields at the receiver array can be
immediately obtained by substituting (15) into (18).

C. Assembly of the Sensitivity Matrix

Now let us discuss how to assemble the sensitivity matrix
for FWI. We use the single-frequency scattered electric field
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data to reconstruct the anisotropic permittivity ϵt , that is, εx ,
εy , σx , σy , and θ in the inversion domain D. First, we assume
the inversion domain D keeps at least one element away
from the elliptical boundary S. Such an assumption is to
lower the computation complexity for the evaluation of the
sensitivity matrix since only Zi i in (13a) depends on the
unknown model parameters inside D if it is not in contact with
S. In addition, the inverse Fourier transform matrix T in (13a)
and the radiation matrix R in (18) are also independent of the
unknown model parameters to be reconstructed. We assume
those model parameters are assembled into a vector X and
rewrite the data equations (18a) and (18b) compactly as

Fsct
= Rh (19)

where Fsct can be Esct
x or Esct

y . Taking the derivatives of both
sides of (19) with respect to X

∂Fsct

∂X
= R

∂h
∂X

(20)

and also taking the derivatives of both sides of (12) with
respect to X

∂Z
∂X

h + Z
∂h
∂X

= 0 (21)

and multiplying the conjugate transpose of the system matrix
Z by (21)

ZH ∂Z
∂X

h + ZH Z
∂h
∂X

= 0 (22)

we finally obtain
∂h
∂X

= −
(
ZH Z

)−1ZH ∂Z
∂X

h (23)

in which ZH Z is an invertible square matrix. Finally, we sub-
stitute (23) into (20) and take the transposes of both sides and
come to(

∂Fsct

∂X

)T

= −

(
∂Z
∂X

h
)T (

ZH )T
[(

ZH Z
)T

]−1
RT (24)

where we have interchanged the order of matrix inverse and
transpose. Now, let [(ZH Z)T ]

−1RT
= h∗ denote the adjoint

magnetic field solution for which (ZH Z)T is the new system
matrix. Meanwhile, keep in mind the adjoint solution depends
on the fictitious excitation source Esct

x or Esct
y . By substituting

h∗ into (24) and taking the transposes of both sides again,
we obtain

∂Fsct

∂X
= −(h∗)T ZH ∂Z

∂X
h. (25)

Then, let us discuss how to compute (∂Z/∂X) in (25).
Assume the complex relative permittivity ϵx , ϵy , or the rotation
angle θ in the mth quadrilateral element is denoted by xm .
Since (∂Z/∂xm) is only related to the stiffness matrix, we now
transform the first term of the integration in (7a) from the
physical coordinate to the reference coordinate

Z i i
pq

=

∫
V

−(ẑ × ∇tψp(x, y)) · ϵ
−1
t (ẑ × ∇tψq(x, y))dxdy

=

∫
3−

(
ẑ×J−1

∇
′

tφ(ξ, η)
)
·ϵ

−1
t

(
ẑ×J−1

∇
′

tφ(ξ, η)
)
|J|dξdη

(26)

where ξ is the abscissa of the reference coordinate, η is
the ordinate of the reference coordinate, J = J(ξ, η) is the
Jacobian matrix for coordinate system transform, |J| is its
determinant, φ(ξ, η) represents the basis function or test-
ing function in the reference coordinate system, and ∇

′
t =

ξ̂ (∂/∂ξ)+ η̂(∂/∂η) is the gradient operator in the ξη domain.
Since we only consider the second SEM in this work, the
basis function or the testing function in (26) can be replaced
with one of the nine GLL functions. As a result, (26) can be
rewritten as

Z i i
pq(i, j) =

∫∫ 1

−1
−

(
ẑ × J−1

∇
′

tφi (ξ, η)
)

· ϵ
−1
t

(
ẑ × J−1

∇
′

tφ j (ξ, η)
)
|J(ξ, η)|dξdη (27)

where i ∈ [1, 9] is the index of the GLL testing function
in the reference domain for ψp while j ∈ [1, 9] is the
index of the GLL basis function in the reference domain for
ψq . In addition, ẑ× actually can be replaced with

[
0 −1
1 0

]
·

for a 2-D problem and the double integrals in (27) can be
numerically evaluated using the GLL quadrature. Therefore,
we have

Z i i
pq(i, j)

=

9∑
k=1

−

([
0 −1
1 0

]
·
[
J−1

∇
′

tφi
]
ξk ,ηk

)
· ϵ

−1
t

([
0 −1
1 0

]
·
[
J−1

∇
′

tφ j
]
ξk ,ηk

)
|J(ξk, ηk)|wkξwkη

(28)

where k is the index for 2-D GLL quadrature point and wkξ
and wkη are the corresponding weights in two orthogonal
directions, respectively. Obviously, (∂Z i i

pq/∂xm) completely

depends on (∂ϵ
−1
t /∂xm). And it is not difficult to prove

∂ϵ
−1
t

∂ϵx
= 2−1

 −
1
ϵ2

x
0

0 0

2 = 2−1ϵeq
x 2 (29a)

∂ϵ
−1
t

∂ϵy
= 2−1

 0 0

0 −
1
ϵ2

y

2 = 2−1ϵeq
y 2 (29b)

∂ϵ
−1
t

∂θ
= 2−1

 0
1
ϵx

−
1
ϵy

1
ϵx

−
1
ϵy

0

2 = 2−1θ eq2 (29c)

where the superscript “eq” means “equivalent.” Specifically
speaking, we can directly replace the original

[
ϵx 0
0 ϵy

]
with

the equivalent matrix ϵ
eq
x , ϵ

eq
y , or θ eq in Zi i when we compute

(∂Z i i
pq/∂xm). Note (∂Z i i

pq/∂xm) actually corresponds to one
of the 9 × 9 elements most of whom are not equal to zero
since the gradient ∇

′
t acts on the basis and testing functions.

Meanwhile, only the mth quadrilateral element of SEM affects
the mth model parameter xm . Therefore, the (i, j)th element
of the derivatives of the mth quadrilateral element in Z i i

pq with
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respect to xm can be evaluated by

∂Z i i
pq,m(i, j)

∂xm
=

9∑
k=1

−

([
0 −1
1 0

]
·
[
J−1

∇
′

tφi
]
ξk ,ηk

)
· 2−1meq2

([
0 −1
1 0

]
·
[
J−1

∇
′

tφ j
]
ξk ,ηk

)
× |J(ξk, ηk)|wkξwkη (30)

where meq can be ϵ
eq
x , ϵ

eq
y , or θ eq .

Finally, let us discuss how to compute (∂Fsct/∂X) in (25).
For convenience, we take the scattered electric field F sct

r,t
recorded by the r th receiver when the inversion domain D
is illuminated by the t th transmitter as an example and only
compute its derivative with respect to the mth quadrilateral
element model parameter xm here. In addition, we assume the
nine GLL nodes of SEM in the mth quadrilateral element are
numbered as (p1, . . . , p9) in all the nodes for the whole com-
putation domain. Consequently, (∂Z i i

pq,m(i, j)/∂xm) is placed
in the position of (pi , p j ) inside the whole matrix (∂Z/∂xm).
For the solution ht of the state equation (15) when the
inversion domain is illuminated by the t th transmitter, it only
interacts with the elements placed in (pi , p j ) of (∂Z/∂xm)

when we compute (∂Z/∂xm)ht . Therefore, the pi th element
in the vector (∂Z/∂xm)ht is(

∂Z
∂xm

ht

)
pi

=

9∑
j=1

∂Z i i
pq,m(i, j)

∂xm
(ht )p j (31)

where (∂Z/∂xm)ht has the dimensions of (Ni + Nb +

Ns) × 1 and only the nine elements located at (p1, . . . , p9) are
not zero. Consequently, when we multiply ZH by (∂Z/∂xm)ht ,
it only interacts with these nine nonzero elements. The lth
element of ZH ((∂Z/∂xm)ht ) is[

ZH
(
∂Z
∂xm

ht

)]
l
=

9∑
i=1

(
ZH )

l,pi

9∑
j=1

∂Z i i
pq,m(i, j)

∂xm
(ht )p j (32)

where ZH ((∂Z/∂xm)ht ) has the dimensions of (Ni +

2 × Ns) × 1. Finally, by substituting (30) into (32) and
substituting (32) into (25), we obtain

∂F sct
r,t

∂xm

=

Ni +2×Ns∑
l=1

[
(h∗)T

]
r,l

9∑
i=1

(
ZH )

l,pi

×

9∑
j=1

{
9∑

k=1

([
0 − 1
1 0

]
·
[
J−1

∇
′

tφi
]
ξk ,ηk

)
· 2−1meq2

·

([
0 − 1
1 0

]
·
[
J−1

∇
′

tφ j
]
ξk ,ηk

)
|J(ξk, ηk)|wkξwkη

}
× (ht )p j (33)

where whether F sct takes E sct
x or E sct

y decides which electric
field component is used to compute the adjoint field h∗.
Finally, we let m traverse all the quadrilateral elements of
SEM, r traverse all receivers, and t traverse all transmitters
and compute all (∂F sct

r,t /∂xm) values to assemble the sensitivity
matrix.

Fig. 2. Two overlapped dielectric anisotropic ellipses are illuminated
by TEz-polarized EM waves which are excited by three magnetic dipole
transmitters. SIM is implemented on the smooth circular boundary S. The
EM fields in the inhomogeneous region inside S are evaluated by SEM.

TABLE I
MODEL PARAMETERS OF TWO OVERLAPPED ANISOTROPIC ELLIPSES

D. Implementation of FWI

Once the sensitivity matrix is obtained, we first separate its
real and imaginary parts to form the real sensitivity matrix.
In this way, we can directly reconstruct the real relative
permittivity, conductivity, and the rotation angle θ . Then,
we follow the same procedure presented in Section II-D
of [31] and construct the least square cost function. Finally,
the CG method is adopted to minimize the cost function.
In addition, the structural consistency constraint (SCC) is used
to filter out the clutters of the background medium during the
iteration process. Note the basic principle of SCC is to classify
whether a discretized mesh inside the inversion domain is the
“background” or “scatterer” based on maximum likelihood
estimation. Its detailed algorithms and performance have been
presented and verified in [14] and [31] and will not be repeated
here.

III. FORWARD VALIDATION

In this section, we show the computation efficiency superior-
ity of the proposed hybrid SESI solver to the traditional FEM
which is implemented by the commercial software COMSOL
via comparing their numerical simulation results. Both the EM
scattering configuration and the basic geometry information
are illustrated in Fig. 2. The SIM is implemented on the
circular boundary S which is denoted by the black dotted line
and has a radius of 0.7 m. Three magnetic dipole transmitters
are located at (−1.0, 0.0), (−0.5, 0.866), and (−0.5, −0.866)
m. Totally, 50 receivers are evenly placed on a circle with
a radius of 1.2 m. The scatterers include two overlapped
anisotropic ellipses and their dielectric parameters are listed
in Table I. The background is free space and the operation
frequency is 1 GHz. To reliably simulate the tangential EM
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Fig. 3. Comparisons of the tangential EM fields along the circular boundary
and the total magnetic fields inside the forward scattering computation
domain computed by FEM and the hybrid SIM/SEM. (a) Real part of Hz.
(b) Imaginary part of Hz. (c) Real part of Et . (d) Imaginary part of Et .
(e) Real part of H tot

z . (f) Imaginary part of H tot
z .

fields on the boundary S, the total fields inside the computa-
tional domain, and the scattered fields at the receiver array by
COMSOL, we set its square computational domain as large
as 3.0 × 3.0 m with the perfectly matched layers (PMLs) to
truncate it. Meanwhile, we set the SD for COMSOL simulation
as 32.6 points per wavelength (PPW). By contrast, the SD for
the second-order SEM implemented inside the computational
domain is 16.7 PPW and it is 6.1 PPW on S for SIM. All
the simulations and numerical computations are performed
on a workstation with an 18-core I9-10980XE 3.0 G CPU
and 256 GB RAM.

Fig. 3(a)–(d) shows comparisons of the tangential EM fields
which are sampled at 90 points along the boundary S with the
azimuthal angle equally divided. Note that Et can be directly
converted from the surface magnetic current. We can see the
SESI results match the FEM results well. The relative error of
Hz between SESI results and FEM results is 0.13% while the
error of Et is 0.16%. We then pick 7 × 7 uniform sampling
points inside the computational domain and verify the accuracy
of the total fields. The sampling point located at the bottom left
corner has the coordinate of (−0.45, −0.45) m. The increment
between two sampling points in either the x̂- or ŷ-direction is
0.15 m. Fig. 3(e)–(f) shows comparisons of the total magnetic
fields at these sampling points computed by the hybrid SESI
method and FEM. The relative error of H tot

z between the two
methods is 0.26%. Obviously, the SESI method can also reach
a reliable accuracy for the computation of total fields.

Fig. 4. Comparisons of the scattered EM fields at the receiver array computed
by FEM and the hybrid SIM/SEM. (a) Real part of E sct

x . (b) Imaginary part
of E sct

x . (c) Real part of E sct
y . (d) Imaginary part of E sct

y . (e) Real part of
H sct

z . (f) Imaginary part of H sct
z .

Fig. 4 shows comparisons of the scattered EM fields at
the receiver array computed by the hybrid SESI method and
by FEM. The relative errors of E sct

x , E sct
y , and H sct

z between
SESI results and FEM results are 0.18%, 0.16%, and 0.18%,
respectively. Although they have good matches, COMSOL
takes 49 s and has a memory cost of 16.5 GB, while the
hybrid SESI method only takes 9.2 s and 4.4 GB of memory to
accomplish the calculation. This big discrepancy indicates that
the proposed forward solver based on the hybrid SIM/SEM can
achieve the same computation accuracy as that of the mature
commercial software with a much lower cost.

IV. INVERSION ASSESSMENT

In this section, we verify the feasibility of EM FWI based
on the proposed hybrid SESI solver when the excitation source
is TEz-polarized. Note we use plane waves instead of the
magnetic dipole to illuminate the inversion domain. In both
numerical examples, the anisotropic dielectric parameters are
reconstructed not only when the scattered electric fields are
noise-free, but also when they are contaminated by 20 dB
white Gaussian noise which leads to approximately 10%
errors. Here, the noise level is defined according to the signal-
to-noise ratio (SNR) of power. In the first numerical example,
only the biaxially anisotropic dielectric parameters of two
inhomogeneous scatterers are reconstructed. By contrast, in the
second numerical example, not only the biaxial parameters
are inverted, but also the rotation angles of the optical axes
are simultaneously retrieved for two arbitrary anisotropic
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Fig. 5. Configuration of the 2-D inverse scattering model including a
biaxially anisotropic homogeneous circular disk and a biaxially anisotropic
inhomogeneous “T”-shaped scatterer. Their geometry sizes are annotated in
the figure. The FWI is implemented in the rectangular region D.

TABLE II
MODEL PARAMETERS OF TWO BIAXIALLY ANISOTROPIC SCATTERERS

scatterers. In addition, to quantitatively evaluate the inversion
performance, we define the data misfit to indicate the relative
difference between the computed and measured scattered fields
at the receiver array and the model misfit to indicate the rela-
tive difference between the reconstructed dielectric parameters
and the true parameters in all the discretized elements inside
the inversion domain. They are, respectively, expressed as

Errdata =

∥∥fsct
inv − fsct

mea

∥∥∥∥fsct
mea

∥∥ (34a)

Errmodel = 1 − SSIM(minv,mtrue)

= 1 −
[2minvm true + C1][2conv(minv,mtrue)+ C2][

m2
inv + m2

true + C1
][

S2
inv + S2

true + C2
]

(34b)

where ∥·∥ stands for the L2 norm, fsct
inv is a column vector

containing the computed scattered field data sampled at the
receiver array in the inversion iteration while fsct

mea contains
the measured scattered field data sampled at the receiver array,
minv is a column vector containing the reconstructed model
parameters of all the discretized elements inside the inversion
domain while mtrue contains the true model parameters of
all discretized elements inside the inversion domain, minv is
the mean of minv while m true is the mean of mtrue, Sinv

is the sample standard deviation of minv while Strue is the
sample standard deviation of mtrue, and conv(minv,mtrue) is
the sample covariance of minv and mtrue. C1 and C2 are
regularization constants to guarantee computation stability of
the structural similarity index measure (SSIM) whose choices
have been discussed in [38]. They are set as the square of one
percent of the maximum absolution value of the true model
parameters in the whole inversion domain.

A. Two Biaxially Anisotropic Scatterers

As shown in Fig. 5, a homogeneous circular disk and
an inhomogeneous “T”-shaped scatterer are placed inside a

TABLE III
MODEL MISFITS (%) OF FOUR RECONSTRUCTED BIAXIALLY

ANISOTROPIC PARAMETERS WHEN ITERATIONS TERMINATE

rectangular inversion domain D with the size of 3.2 × 1.6 m
which is uniformly discretized into 160 × 80 elements. The
size of each square element is 0.02 × 0.02 m. The geometry
sizes of two scatterers are annotated in Fig. 5 and their
respective dielectric parameters are listed in Table II. The
rectangular inversion domain is wrapped by an ellipse on
which the SIM is performed. The horizontal half axis of the
ellipse has a length of 2.2 m while the length of its vertical
half axis is 1.4 m. We use 50 plane waves to illuminate the
inversion domain and the incident directions of these waves
evenly divide the whole circumference with equal azimuthal
angle step. Meanwhile, 70 receivers evenly placed on a circle
with a radius of 3.0 m are used to record the scattered electric
fields. The operating frequency is 300 MHz.

Fig. 6 shows ground truths of the dielectric parameters
of two biaxially anisotropic scatterers and the corresponding
inversion results when noise-free and the scattered electric
fields are contaminated by 20-dB noise. The CG iteration
terminates after 120 steps when the data misfit reaches
3.4 × 10−4 for the noise-free situation. However, it only
takes 65 steps to accomplish the inversion when the data
misfit reaches 9.9 × 10−2 for the noisy situation. The corre-
sponding model misfit values when the iterations terminate
are listed in Table III. By comparing the second column
and the third column shown in Fig. 6, we can see the
reconstructed shapes are clearly discernible and the obtained
dielectric parameters are basically correct even when the
scattered electric fields are contaminated by 20-dB noise. This
indicates that the FWI based on the proposed hybrid SESI
solver has a certain antinoise ability. Another observation is
that the reconstructed shapes of permittivity distribution are
closer to the true shape than those of conductivity distribution
for the case with 20-dB noise. This is also manifested by the
larger model misfit values of the reconstructed conductivity
compared to those of the reconstructed permittivity listed in
Table III. One possible reason for this phenomenon is that
the imaginary part of the complex permittivity is obviously
smaller than the real part, thus the scattered electric field is
less sensitive to scatterer conductivity.

B. Two Arbitrary Anisotropic Scatterers

In this numerical example, we will reconstruct 2-D arbitrary
anisotropic scatterers using SESI-CG. We rotate the optical
axis to construct the arbitrary anisotropic dielectric parameters
from biaxially anisotropic ones. Not only the biaxial parame-
ters are reconstructed, but also the rotation angle is retrieved.
As shown in Fig. 7, two homogeneous square scatterers have
the same biaxial dielectric parameters εx = 2.0, εy = 1.5,
σx = 5.0 mS/m, and σy = 10 mS/m before we rotate their
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Fig. 6. Reconstructed biaxially anisotropic profiles of the 2-D scatterers. The first column shows the ground-truth profiles. The second column shows the
reconstructed profiles when noise-free. The third column shows the reconstructed profiles when 20-dB noise is added. White dotted boxes denote true shapes.

Fig. 7. Configuration of the 2-D inverse scattering model including two
arbitrary anisotropic homogeneous square scatterers. Their geometry sizes are
annotated in the figure. The FWI is implemented in the rectangular region D.

optical axes. We then let the rotation angle defined in (3)
be π /6 for the upper square scatterer and that be −π /6 for
the lower square scatterer to form two different arbitrary

anisotropic scatterers. Other geometry sizes of the scatterers,
inversion domain D, and the ellipse are also annotated in
Fig. 7 and will not be repeated here. The rectangle inversion
domain D is uniformly discretized into 70 × 140 elements
and each square element has the size of 0.02 × 0.02 m.
In total, 50 plane waves whose incident directions evenly
divide the whole circumference with the equal azimuthal angle
step are used to illuminate the inversion domain. And totally
60 receivers are evenly placed on a circle with a radius of
2.5 m. The operating frequency is still 300 MHz.

Fig. 8 shows the ground truth of the arbitrary anisotropic
parameter distribution and the inversion results when the scat-
tered electric fields recorded at the receiver array are noise-free
or contaminated by 20-dB noise. Three observations are made
here. First, SESI-CG can simultaneously reconstruct five arbi-
trary anisotropic parameters. Even when 20-dB noise is added,
reliable inversion results still can be acquired. Second, the
reconstructed rotation angles have worse profiles than those of
biaxial permittivity and conductivity. This is further confirmed
by the large model misfits of the reconstructed rotation angles
when the iterations terminate as listed in Table IV. This may be
because the derivatives of the arbitrary anisotropic parameters
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Fig. 8. Reconstructed dielectric biaxial parameters and optical axis rotation
angles of the 2-D arbitrary anisotropic scatterers. The first column shows the
ground-truth profiles. The second column shows the reconstructed profiles
when noise-free. The third column shows the reconstructed profiles with
20-dB noise.

TABLE IV
MODEL MISFITS (%) OF FIVE RECONSTRUCTED
ARBITRARY ANISOTROPIC PARAMETERS WHEN

SESI-CG ITERATIONS TERMINATE

Fig. 9. The convergence processes for the FWI of the arbitrary anisotropic
scatterers. (a) Variations of data misfits of the scattered fields in different
iteration steps. (b) Variations of model misfits of εx in different iteration steps.
(c) Variations of model misfits of εy in different iteration steps. (d) Variations
of model misfits of σ in different iteration steps. (e) Variations of model
misfits of σy in different iteration steps. (f) Variations of model misfits of θ
in different iteration steps.

with respect to the rotation angle are more complicated than
those with respect to a single biaxial parameter, as illustrated
in (29c). The complicated expressions of derivatives naturally
increase the nonlinearity, nonuniqueness, and instability of the
inversion. Third, compared with the inversion results shown
in Fig. 6 for biaxial anisotropic scatterers, the reconstructed
profiles shown in the first four rows of Fig. 8 are obviously
worse. The rotation of the optical axes actually strengthens
the nonlinearity relationship between the dielectric parameters
and the scattered fields, which automatically deteriorates the
inversion performance.

Fig. 9(a) shows the variations of data misfits in different
SESI-CG iteration steps. We can see that the CG solver takes
150 steps until the data misfit becomes less than 0.04% to stop
when noise-free. However, it only takes 72 steps to terminate
if the relative error in three constitutive steps is less than
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0.1% for the noisy case. The data misfit value then weakly
fluctuates up and down in the noise level and almost remains
unchanged. Fig. 9(b)–(f) shows the variations of model misfits
of five anisotropic parameters in corresponding iteration steps.
We can see the convergence curves for the noise-free case
and for the case with 20-dB noise almost overlap in a series
of iteration steps. However, the final model misfits for the
noise-free case are definitely lower than those for the noisy
case.

V. CONCLUSION AND SUMMARY

In this work, we developed the hybrid SESI method for
EM scattering from 2-D anisotropic scatterers when the exci-
tation source is TEz-polarized. The inhomogeneous region is
discretized and solved by SEM whose computational domain
is truncated by a smooth elliptical boundary on which SIM
is implemented to realize the RBC. Then the discretized state
equation is formed and both the spatial-domain magnetic field
in the internal nodes and the Fourier coefficients of equivalent
electric current and magnetic current on the smooth boundary
can be simultaneously solved. Finally, the spatial-domain
scattered EM fields at the receiver array can be directly com-
puted by multiplying the Fourier coefficients on the boundary
and the spectral-domain radiation matrix. For the inversion,
to assemble the sensitivity matrix, we first compute the adjoint
magnetic fields by multiplying the conjugate transpose of
the old system matrix by the system matrix itself to form
a new system matrix. Then, we focus on the stiffness part of
the old system matrix and compute its first-order derivative
with respect to the anisotropic model parameters inside the
inversion domain. Finally, we multiply the adjoint magnetic
field solution by the derivative matrix of the stiffness matrix
and multiply them by the magnetic field solution itself to
obtain the final sensitivity matrix.

Several numerical examples are given to show the computa-
tion efficiency of the proposed hybrid SEIM/SEM for forward
scattering and its feasibility for inverse scattering. It is found
that not only the computation time, but also the memory
cost is significantly reduced by the hybrid SISE method
compared to the traditional FEM in the forward scattering.
In the inversion, numerical results show that SESI-CG can
reconstruct all anisotropic model parameters including the
optical axis rotation angle. However, the obtained parameter
profiles show some fluctuations within homogeneous regions
and this phenomenon becomes more severe when the measured
scattered field data are contaminated by 20-dB noise.
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